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Preface

0.1 Laboratory procedure

Make sure you have read the experimental and instrumental instructions before coming to the class. You are
expected to take all classes, except for some special emergency circumstances. If you are not able to attend the
class, inform your instructor to search for an alternative.

All experimental results should be documented in your laboratory notebook. A lab report (which is due in
the week that follows from the date you have performed the experiment) will be required for each experiment.
You should prepare your own lab report! The structure of the report will be the following:

� The title of the report, your name and the date.
� Abstract: a brief description of the experiment you have performed and of the results you got.
� Theory and methods: succint presentation of the theoretical basis of the project and of the methods you

have used to record and interpret experimental data.
� Results section: present your results. Use tables and graphs. Use computer programs (e.g. gnuplot or qtiplot

which are available under GNU License) to plot your graphs. Explain the calculations you have performed.
Evaluate the errors. Discuss your findings.

� Conclusions: present your main conclusions and suggest possible improvements.
� References: cite any references you have used. Use the format:

1. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935).
2. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt, 1976), chapt. 3.
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1

Crystalline structures

1.1 Theory

A crystalline structure or a crystal is a periodic arrangement in space of atoms or groups of atoms. The atom
or the group of atoms that is repeated periodically is called the basis of the crystalline structure. The set of
points in space corresponding to basis locations in a crystal is called crystalline lattice. From the very definition
of the crystalline structures, it follows that the crystalline lattice is defined as:

Rn1n2n3
= n1a1 + n2a2 + n3a3, (1.1)

where the set a1, a2, a3 (called the set of fundamental vectors) contains the basic periods in the 3D space
and ni ∈ Z, |ni| < Ni/2 i = 1, 2, 3, Ni being the number of periods along ai direction. Since the interatomic
distances in crystals are in the range 3− 10 Å, Ni’s are big numbers in macroscopic crystals, a commonly used
model consists in extending the crystalline lattice to fill the entire space by replicating the initial crystal with
lengths Li = Niai, i = 1, 2, 3 over directions of fundamental vectors ai. Therefore, in this model, ni, i = 1, 2, 3
in eq. (1.1) take all integer values. The vectors (1.1) pointing to the sites of the crystalline lattice are called
Bravais vectors, after the name of the French physicist Auguste Bravais who studied and classified crystalline
structures. The branch of physics concerned with determining the arrangement of atoms in the crystalline
solids is called crystallography.

The parallelepiped generated by the fundamental vector is called primitive cell. A primitive cell contains
all the atoms in exactly one basis. The volume of the primitive cell is given by:

Vp = |a1 · (a2 × a3)| =

∣

∣

∣

∣

∣

∣

a1x a1y a1z
a2x a2y a2z
a3x a3y a3z

∣

∣

∣

∣

∣

∣

(1.2)

where aix, aiy, aiz are the components of ai in the orthogonal coordinate system (x, y, z).

1.1.1 Crystalline lattice. Translational symmetry

The following notations are used in crystallography:

� a site is defined by the integers in the Bravais vector pointing to it, as [[n1n2n3]];
� a direction is defined by the site next to the chosen origin along it, as [n1n2n3]. Since all the sites are

equivalent, any of them may be chosen as the origin of the coordinate system.
� all the sites in a crystalline lattice are distributed in families of parallel planes. Those planes are defined by

indicating a set of integers associated to their normal vectors, called Miller’s indexes, as (h, k, l). Miller’s
indexes will be defined below.
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To each crystalline lattice in the real, physical, space we will associate its reciprocal lattice, as the lattice
defined by the fundamental vectors:

b1 =
2π

Vp
a2 × a3 (1.3)

b2 =
2π

Vp
a3 × a1 (1.4)

b3 =
2π

Vp
a1 × a2. (1.5)

All the sites in the reciprocal lattice are then defined by Qs1s2s3 = s1b1 + s2b2 + s3b3, with si ∈ Z. As ai
is a distance in the physical space, one can easily verify from eqs. (1.3,1.4,1.5) that bi is the reciprocal of a
distance. i.e. it is a wave vector. The reciprocal space is the space of wave vectors.
In addition, from eqs. (1.3,1.4,1.5) it is easily verified that:

ai · bj = 2πδij . (1.6)

Let’s consider an arbitrary point in the physical space r = x1a1 + x3a2 + x3a3 and take the scalar product
with a vector Qhkl = hb1 + kb2 + lb3 of the reciprocal lattice (h, k, l are integers). Using eq. (1.6) one obtains:

Qhkl · r = 2π(hx1 + kx2 + lx3). (1.7)

Recall that the equation of a plane with normal n and containing the point r0 is n · (r − r0) = 0. Then eq.
(1.7) with variables (x1, x2, x3) defines a plane with Qhkl directed along its normal (Fig.1.1). Values h, k, l are
Miller’s indexes of the plane.

d
hkl r

Q
hkl

α

Fig. 1.1. Family of (hkl) planes in a crystalline lattice.

If x1, x2, x3 are integers, then r is a Bravais vector. For the plane passing through the chosen origin, eq.
(1.7) is Qhkl · r = 2π(hx1 + kx2 + lx3) = 0, while for the very next plane in the family along Qhkl direction it
reads Qhkl · r = Qhkldhkl = 2π, where dhkl = r cosα is the distance between planes and Qhkl is the magnitude
(modulus) ofQhkl. In establishing the last equation it was taken into account that the expression hx1+kx2+lx3
is an integer taking the successive values 0, 1, . . . for the planes passing through the origin, the next one, etc.
It follows that the distance between (h, k, l) planes is given by:

dhkl =
2π

Qhkl
. (1.8)

As in general vectors b1,b2,b3 are not orthogonal, Qhkl is given by:
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Qhkl =

√

h2b21 + k2b22 + l2b23 + 2hk cos( ˆb1,b2) + 2kl cos( ˆb2,b3) + 2hl cos( ˆb3,b1). (1.9)

A change in coordinates or variables of an object which leaves it invariant, is called a symmetry transfor-
mation of that object. Let Ô be the symmetry operation describing the change of the coordinates associated
to a geometric symmetry transformation taking the point r to the point r′ = Ôr (relative to a fixed coordinate
system) and f(r) an arbitrary physical property of the object (e.g. the charge density of a crystal). The invari-
ance of the properties of the object is mathematically expressed as f(r′) = f(Ôr) = f(r).

The fundamental symmetry of a crystalline lattice, deriving from its definition in eq. (1.1), is its invariance
to translations defined by Bravais vectors, i.e. r′ = TRr = r + Rn1n2n3

. Since two successive translations by
Bravais vectors R1 and R2 is a translation by Bravais vector R1 + R2, the following properties are easily
verified, based on the mathematical properties of the addition of vectors:

� associativity of translations by Bravais vectors: TR1
(TR2

TR3
) = (TR1

TR2
)TR3

= TR1
TR2

TR3
= TR1+R2+R3

,
(∀)TR1

, TR2
, TR3

;
� commutativity of translations by Bravais vectors: TR1

TR2
= TR2

TR1
, (∀)TR1

, TR2
;

� identity element: T0TR = TRT0 = TR, (∀)TR;
� inverse element: (∀)TR, (∃)T−1

R = T−R, with TRT
−1
R = T−1

R TR = T0.

It follows that the infinite set of Bravais translations {TR} with the internal composition law introduced
above is organised as an abelian group. Translational invariance of the crystalline lattice is related to the long
range order in crystals.

1.1.2 Point symmetry. Crystal classes.

A symmetry transformation which brings a body into coincidence with itself while keeping at least one of its
points fixed, is called a point symmetry. Examples:

� Rotation about an axis: suppose that the rotation axis is Oz and the rotation angle is ϕ. Then the change
in coordinates is given by the rotation matrix:





x′

y′

z′



 =





cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1



 ·





x
y
z



 (1.10)

If the rotation angle is ϕ = 2π
n , the notation for the rotation symmetry element is n (n-fold rotational

symmetry). This is the international crystallographic notation (or Hermann-Mauguin notation).
� Reflection in a plane: suppose the mirror is xy plane. Then the change in coordinates is given by the matrix:





x′

y′

z′



 =





1 0 0
0 1 0
0 0 −1



 ·





x
y
z



 (1.11)

The notation for the reflection symmetry element is m (mirror).
� Spatial inversion (the notation is i):





x′

y′

z′



 =





−1 0 0
0 −1 0
0 0 −1



 ·





x
y
z



 (1.12)

� Rotoinversion or rotary inversion1: rotation about an axis, followed by an inversion about a point on the
axis. This is a new point symmetry: the analyzed object is not invariant by rotation or inversion only. If

1 Another possible choice for this supplemental point symmetry would be the rotoreflection or rotary reflection: a
rotation followed by a reflection in a plane perpendicular to the rotation axis. This type of point symmetry is used
in physics of molecules. In crystallography, the rotary inversion is preferred, being more suitable.
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the rotation angle is ϕ = 2π
n , the Hermann-Mauguin notation for the rotation-inversion symmetry element

is n. If the rotation axis is Oz, the change in coordinates is given by:





x′

y′

z′



 =





− cosϕ sinϕ 0
− sinϕ − cosϕ 0

0 0 −1



 ·





x
y
z



 . (1.13)

Let A be the matrix describing a point symmetry element. If detA = +1, the symmetry element is called
proper (it transforms a right-handed trihedron into a right-handed trihedron). If detA = −1, the symmetry
element is called improper (it transforms a right-handed trihedron into a left-handed trihedron). Pure rotations
are the only proper point symmetry elements.

The point symmetry of crystalline structures must be compatible to their fundamental property, which is
the long range order (translational symmetry). Suppose that a crystalline lattice is invariant by rotation about
an axis and let ϕ be the rotation angle (Fig. 1.2).

ϕ

ϕ
pa

a

a

Fig. 1.2. Transformation of a crystalline lattice after rotation about an axis perpendicular to the plane of the figure.

Let a be the distance between first neighbour sites in one row of the lattice. The rotations of the selected
row by ±ϕ result in the configuration plotted in Fig. 1.2. Since a is the smallest distance between sites on the
selected row, the distance between sites indicated by the arrow must be an integer multiple of a:

pa = 2a cosϕ. (1.14)

It follows that cosϕ = p
2 , p ∈ Z and

−1 ≤ p

2
≤ 1. (1.15)

All the possible values for the integer p and the rotation angle ϕ are listed in Table 1.1.

Table 1.1. Rotations compatible with translational symmetry of crystalline lattices.

p ϕ n-fold axis

-2 π 2
-1 2π

3
3

0 π

2
4

1 π

3
6

2 2π 1
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A crystalline structure can only be invariant by the following rotations or rotary inversions: 1, 1, 2, 2, 3, 3, 4, 4, 6, 6.
It is easy to show that 1 = i and 2 = m (left as an exercise).
All point symmetry elements of a crystalline structure form a group: the point group of the structure. The
identity element is 1 (rotation by 2π).
The simplest groups that can be generated by the allowed point symmetry elements are {1} and {1, i}. The cor-
responding primitive cell is an parallelepiped whose faces are arbitrary parallelograms, i.e. a1 6= a2 6= a3 6= a1
and α12 6= α23 6= α31 6= α12, where αij 6= π

2 is the angle between ai and aj . These crystalline structures belong
to the less-symmetric class or syngony, called triclinic. Only simple (or primitive) structures exist in this class,
i.e. all the sites are in the vertices of the unit cell.
Next are the groups containing a single 2-fold axis or a mirror, i.e. {1, 2} , {1,m} and {1, 2,m, i}. The corre-
sponding primitive cell is a parallelepiped with two arbitrary parallelograms as bases, the lateral faces being
rectangles: a1 6= a2 6= a3 6= a1 and π

2 = α12 = α23 6= α31. Simple (primitive) and base-centered (sites in the
vertices and in the center of parallelogram bases of the unit cell) structures exist in this class. Elemental sulfur
is an example of monoclinic crystal (but it can also exist in other forms).
All crystals can be classified based on their point symmetry (Table 1.2).

Table 1.2. Classification of crystalline lattices based on their point symmetry.

Crystal class (syngony) Unit cell Type

triclinic a1 6= a2 6= a3 6= a1 , α12 6= α23 6= α31 6= α12 primitive
monoclinic a1 6= a2 6= a3 6= a1 , π

2
= α12 = α23 6= α31 primitive, base-centered

orthorhombic a1 6= a2 6= a3 6= a1 , π

2
= α12 = α23 = α31 primitive, base-centered, body-centered, face-centered

rhombohedral or trigonal a1 = a2 = a3 , π

2
6= α12 = α23 = α31 primitive

tetragonal a1 = a2 6= a3 , π

2
= α12 = α23 = α31 primitive, body-centered

cubic a1 = a2 = a3 , π

2
= α12 = α23 = α31 primitive, body-centered, face-centered

hexagonal a1 = a2 6= a3 , π

2
= α13 = α23,

2π

3
= α12 primitive

There are in all 7 crystal classes (or syngonies) and 14 types of lattices. The body-centered type unit cell
has sites in the vertices and in its center of mass. The face-centered type unit cell has sites in the vertices and
in the center of its faces. The base-centered type unit cell has sites in the vertices and in the center of its bases.
Point symmetry elements transform a crystalline direction into an equivalent one. It is the symmetry of material
tensors (e.g. electrical conductivity, permitivity, etc.)

1.1.3 Space symmetry. Space groups

The complete symmetry of a crystalline structure is obtained by combining translations Tt with point symmetry
elements r, to obtain space symmetry elements:

g = Tt r = (r|t). (1.16)

The composition law of two space symmetry elements is given by:

g1g2 = Tt1 r1Tt2 r2 = (r1r2|t1 + r1t2). (1.17)

The translation associated to a given point symmetry element is defined by eq. (1.17), starting from the
translations of the generators of the point group. In general, t is not a Bravais vector:

t = R + ρ. (1.18)

with ρ = γ1a1 + γ2a2 + γ3a3, |γi| < 1. Values γi 6= 0 are always associated to a complex basis of the crystalline
structure, containing more than one chemically equivalent atoms.
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3 m

a

3
t=

m
a

(a) (b)

Fig. 1.3. Space symmetry elements: screw axis (a) and glide mirror (b).

Space symmetry elements generated as stated above are screw axes (or helical axes) and glide mirrors (Fig.
1.3). Screw axes and glide mirrors with ρ 6= 0 are called essential.

The set of space symmetry operations with the composition law (1.17) forms a group: the space group of the
crystal. There are 230 space groups. If a space group contains essential screw axes or glide mirrors, it is called
non-symmorphic. Otherwise, it is called symmorphic. There are 77 symmorphic space groups. Space symmetry
is the microscopic symmetry of the crystals; it is the symmetry of wave-functions.

1.2 Experimental setup and procedure

You are asked to perform a geometrical characterization of selected crystalline structures. Use the models
available in lab. The procedure you will follow is indicated below, in the case of a body-centered cubic (bcc)
structure (Fig. 1.4). Iron has this type of structure.

x

y
z

O
(a) (b)

Fig. 1.4. Face-centered cubic (a) and body-centered cubic (b) unit cells. Fundamental translation vectors are indicated
in both cases.

� Search for fundamental translation vectors. Give their expressions, relative to an orthogonal coordinate
system. 2

For the bcc structure the fundamental translation vectors are:

2 Hint: search for three linear-independent vectors conecting first neighbour sites in the structure. Use the symmetry
of the structure. Make sure that all sites can be obtained using eq. (1.1) based on the fundamental vectors you have
selected.
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a1 =
a

2
(x − y − z) (1.19)

a2 =
a

2
(−x+ y − z) (1.20)

a3 =
a

2
(−x− y + z), (1.21)

a being the edge of the cube. The primitive cell is a rhombohedron, generated by the fundamental vectors.
Its volume is (see eq. (1.2))

Vp = |a1 · (a2 × a3)| =
a3

8

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 −1
−1 1 −1
−1 −1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
a3

2
. (1.22)

However, bcc and fcc structures are not chracterized in crystallography by the primitive cells. The reason
is the fact that the maximum symmetry of the primitive cell (the rhombohedron) is 3, while the maximum
symmetry of the cubic structure is 4. In these two cases, 4-fold axes are generated by packaging of rhombo-
hedra with peculiar angles between fundamental vectors. Instead, the cubic unit cell is used, as it contains
all point symmetry elements of the structure. The unit cell vectors are simply:

c1 = ax (1.23)

c2 = ay (1.24)

c3 = az. (1.25)

The volume of the unit cell is V = a3. The multiplicity of the unit cell is defined as M = V
Vp

= 2. The bcc

unit cell is twice the primitive cell.
The unit cell of the bcc structure contains two equivalent sites (each one can be obtained from the other
by a Bravais fundamental translation): [[000]], [[ 12

1
2
1
2 ]]. This is because its multiplicity is 2. In general, the

number of atoms in a unit cell can be calculated as:

N =
1

8
Nv +

1

6
Nf +

1

4
Ne +Ni, (1.26)

where Nv is the number of atoms in vertices of the cell, Nf is the number of atoms on the faces, Ne is the
number of atoms on the edges and Ni is the number of atoms inside the cell.
Relative to the cubic vectors, generating the unit cell, all the sites of the structure can be described as
[[u, v, w]], [[u+ 1

2 , v+
1
2 , w+ 1

2 ]], with u, v, w ∈ Z. From this point on, all reference is to cubic vectors (1.25).
� Search for the first and second neighbours to a given atom.

This is important, because in general the electronic structure of crystals is determined by interactions
between first and second neighbours. The number of first neighbours in bcc structure is 8 and the distance

between them is a
√
3

2 . The number of second neighbours is 6 and the distance between them is a.
� Suppose that first neighbours are rigid spheres. The fill factor is defined as the ratio of the volume occupied

by the spheres to the total volume of the structure. Evaluate the fill factor. Evaluate the radius of the largest
sphere (this could be an impurity atom) that can be introduced in the structure in an empty space, without
deforming the structure.

The distance between first neighbours is twice the radius of a sphere, so R = a
√
3

4 . As in the unit cell there

are two complete spheres, the fill factor is k =
2 4π

3
R3

a3 =
√
3π
8 ≈ 0.68.

� Identify the point symmetry elements.
- 3 4-fold rotations: [100], [010], [001];
- 4 3-fold rotations: [111], [1 11], [111], [111];
- 6 2-fold rotations: [110], [110], [101], [101], [011], [011];
- 3 mirrors: (100), (010), (001);
- 6 mirrors: (110), (110), (101), (101), (011), (011);
- inversion.
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� Determine the reciprocal lattice. Give the general expression for interplanar distance.
Reciprocal basis vectors are:

b1 =
2π

V
c2 × c3 =

2π

a
x (1.27)

b2 =
2π

V
c3 × c1 =

2π

a
y (1.28)

b3 =
2π

V
c1 × c2 =

2π

a
z. (1.29)

and they seem to generate a cubic lattice. However, there is a constraint on the points generated by the
above determined vectors: since c1, c2, c3 are not fundamental Bravais translations, Qhkl = hb1+kb2+ lb3

is a vector of the reciprocal lattice if and only if Qhkl · Rc = 2πp, p ∈ Z, with Rc = uc1 + vc2 + wc3 or
Rc =

(

u+ 1
2

)

c1 +
(

v + 1
2

)

c2 +
(

w + 1
2

)

c3, u, v, w ∈ Z. Since ci · bj = 2πδij , the following equations are
obtained:

hu+ kv + lw = p1 (1.30)

h

(

u+
1

2

)

+ k

(

v +
1

2

)

+ l

(

w +
1

2

)

= p2 (1.31)

with p1,2 ∈ Z. This is true when h, k, l ∈ Z and h+k+l
2 ∈ Z. It is easily verified that these two conditions

define a fcc lattice. So, the reciprocal lattice of the bcc lattice is a fcc one. The reciprocal statement is also
true: the reciprocal lattice of the fcc is a bcc one.3.
The distance between (hkl) planes is given by (1.8):

dhkl =
2π

Qhkl
=

a√
h2 + k2 + l2

. (1.32)

Recall that h, k, l are subject to above determined constraints.

1.3 Tasks

Use the procedure described above to characterize the following two crystalline structures:
- the fcc crystalline structure;
- the hexagonal compact (hc) crystalline structure.
The two mentioned structures are related, although their point groups are very different. Try to understand
why.

3 One can easily check that the same result is obtained if the fundamental vectors a1,a2,a3 are used instead of cubic
ones.
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Investigation of copper crystalline structure by X-ray diffraction

Interatomic distances in crystalline solids are tipically in the range 3 − 10 Å. The periodic three-dimensional
lattice of a crystal diffracts electromagnetic radiation with suitable wavelength the same way a ruled diffraction
grating diffracts the visible light. The electromagnetic radiation suitable for investigating structural properties
of crystals should have wavelengths in the range 0.5− 2.0 Å. This is in the X-ray region of the electromagnetic
spectrum.

2.1 Theory

X-ray beams used in crystallography are produced in X-ray tubes or in synchrotrons. Obviously the first type
of source is by far less expensive and most used in modern diffractometers. Synchrotron radiation is rather
used in special more advanced applications.

Fig. 2.1. Schematics of a X-ray tube.

In a X-ray tube (Fig. 2.1) electrons accelerated to energies of tens keV, emitted by a hot cathode, are
directed towards a metallic anticathode (or anode), usually water-cooled. Due to Coulomb interactions with
the electrons and nuclei of the anticathode material, X-rays are emitted, The typical emission spectrum is
shown in figure 2.2.

The continuous part of the spectrum is due to electrons which are suddenly decelerated upon collision
with the metal target (brehmsstralung). It is independent of the anticathode material. The minimum wave-
length depends on the initial kinetic energy of electrons (i.e. the high voltage applied between cathode and
anticathode):
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Fig. 2.2. Typical emission spectrum of a X-ray tube.

λmin =
12400

U(V )
Å. (2.1)

Characteristic X-rays depends on the anticathode material; if the bombarding electrons have sufficient
energy, they can excite an electron from an inner shell n of the target metal atoms. Then electrons from higher
states n1 drop down to fill the vacancy, emitting X-ray photons with determined energies En1

−En, set by the
electron energy levels. Figure 2.3 shows the series of emission lines; some of the most used in crystallography
are collected in table 2.1.

Fig. 2.3. Characteristic X-rays emited in a X-ray tube. Selection rules are: ∆l = ±1, ∆j = 0,±1.

Table 2.1. Spectral emission lines for some of the most used anticathode materials.

Element Kβ1
(Å) Kα1

(Å) Kα2
(Å)

Mo 0.63225 0.70926 0.71354
Cu 1.39217 1.54059 1.54433
Co 1.62075 1.78892 1.79278
Fe 1.79278 1.93597 1.93991
Cr 2.08479 2.28962 2.29352
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One of the most used experimental setups in modern diffractometers is the so-called Bragg-Brentano ge-
ometry: the X-ray tube and the elements of the input optics are mounted on one arm of a goniometer, while
the output optics and the detector are mounted on the other arm (Fig. 2.4). The sample is stationary while
the X-ray tube and the detector are rotated around it. The angle formed between the tube and the detector is
2θ, θ being the angle formed between the direction of the incident X-rays and the surface of the sample. This
is the Bragg-Brentano theta-theta geometry.

Fig. 2.4. The Bragg-Brentano geometry. The arms of the goniometer are coupled in their rotation, in the way that the
diffracted radiation is detected at the scattering angle 2θ, the incident X-rays being directed at the angle θ with respect
to the surface of the analyzed sample.

The diffraction pattern recorded in Bragg-Brentano geometry consists of one (in the case of monocrystals)
or several peaks (polycrystalline materials or powder) at specific incident angles, defined by Bragg’s law:

2dhkl sin θ = nλ, (2.2)

dhkl being the distance between (hkl) planes, given by

dhkl =
2π

Qhkl
, (2.3)

with Qhkl = hb1+ kb2+ lb3, bi, i = 1, 2, 3 being the fundamental translation vectors of the reciprocal lattice.
For cubic crystals with lattice constant a:

dhkl =
a√

h2 + k2 + l2
. (2.4)

Miller’s indexes h, k, l are subject to the following constraints in the case of cubic structures:

� Simple cubic lattice: h, k, l are integers, no supplementary constraints;
� Body-centered cubic lattice: h, k, l are integers and h+ k + l is an even integer;
� Face-centered cubic lattice: h, k, l are integers and h+ k, k + l, h+ l are even.

Observed peaks correspond to reciprocal sites located at the same distance Q to the origin, which is usually a
consequence of the point symmetry. Let M be the number of reciprocal sites corresponding to the considered
peak (its multiplicity). For example, in a simple cubic crystal, (100) peak has M = 6, because in a powder
diffraction experiments the grains with (100), (100), (010), (010), (001), (001) planes oriented parallel to the
surface of the sample contribute to the peak appearing at the same 2θ angle.
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2.2 Experimental setup and procedure

This experiment will be performed under the supervision of an authorized person, after a proper

training.
The diffraction pattern of a polycrystalline copper sample will be recorded in the 2θ range 10°- 100° by using
a diffractometer with CuKα1

radiation (the corresponding wavelength is in table 2.1). From eq. (2.2) it follows
that for cubic structures:

sin2 θ =
λ2

4a2
(h2 + k2 + l2) (2.5)

with sin2 θ values ranging in an arithmetc progression (with some missing terms, due to above mentioned
constraints, see also table 2.2). The cubic lattice constant a may be determined if the wavelength of the
incident monochromatic X-ray beam is known and the peaks are indexed correctly.

Table 2.2. hkl Miller’s indexes with increasing h2 + k2 + l2 values in cubic crystals.

hkl Primitive: h2 + k2 + l2 Body-centered (bcc): h2 + k2 + l2 Face-centered (fcc): h2 + k2 + l2

100 1 - -
110 2 2 -
111 3 - 3
200 4 4 4
210 5 - -
211 6 6 -
220 8 8 8

221-300 9 - -
310 10 10 -
311 11 - 11
222 12 12 12
320 13 - -
321 14 14 -

From data in table 2.2 it follows that the sequence of experimentally obtained sin2 θ values, θ being the
center of the peak, is proportional to:

� 1 2 3 4 5 6 8 etc. for primitive (simple) cubic crystals;
� 1 2 3 4 5 6 7 etc. for body-centered cubic crystals;
� 1 4/3 8/3 11/3 4 etc. for face-centered cubic crystals.

2.3 Tasks

� Indicate Miller’s indexes (hkl) corresponding to each observed peak in the diffraction pattern of the copper
sample. Identify the lattice type of the copper crystal. (Hint: the lattice is cubic; you have to find out the
precise type of cubic lattice. Use the sequence of sin2 θ values.);

� Determine the lattice constant a.
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Temperature dependence of electrical resistivity of metals

3.1 Theory

Charge transport in macroscopic (semi)conductors can be described in the frame of Boltzmann’s approach,
in the time relaxation approximation. A conductor will respond to an external applied electrical field by
establishing a flow of free carriers - an electrical current. The current density, j, will be proportional to the
applied field if the field is not too strong:

j = σ̂ ·E, (3.1)

which is the well-known Ohm’s law, in its local form.
This is an out-of-equilibrium state of the conductor, described by some one-particle distribution function
f(r,k, t), expressing the probability to find a charge carrier (e.g. an electron in the conduction band) in the
position r, in the state indexed by the wave vector k at time t.
In thermodynamic equilibrium:

df0
dt

= 0, (3.2)

with f0 being Fermi-Dirac distribution function:

f0(k) =
1

1 + exp
(

E(k)−EF

kBT

) , (3.3)

eq. (3.2) expressing the fact that the electron gas is homogeneous throughout the system and its properties do
not depend on time. In (3.3) kB is Boltzmann’s constant.

In the out-of-equilibrium state, the evolution of the distribution function is given by Boltzmann’s equation:

df

dt
=

(

∂f

∂t

)

coll

, (3.4)

or, expressing the total derivative in the left-hand-side:

∂f

∂t
+ v · ∇rf − e

~
E · ∇kf =

(

∂f

∂t

)

coll

. (3.5)

In eq. (3.5) v = 1
~
∇kE(k) is the mean velocity of an electron in a Bloch state with energyE(k) in the conduction

band, Fe = −eE is the force acting on an electron due to the applied field and the right-hand-side
(

∂f
∂t

)

coll
is the so-called collision term, or collision integral, describing the effect of scattering events affecting electron
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dynamics, associated to defects inherent in real crystals. These defects break the translational symmetry of
a perfect crystal. If the crystalline order is not significantly altered, the potential energy describing electron-
defect interaction will act as a small localized (in space and time) perturbation to the one-particle Hamiltonian
corresponding to the perfect crystal. Consequently, the dynamics of free charge carriers (e.g. electrons in the
conduction band of metals), can be characterized as being a diffusive one: the defects will scatter the carriers
from one Bloch’s state to another in the same band, inducing a rapid relaxation of the momentum and/or the
energy of the carriers. In the relaxation time approximation, one writes:

(

∂f

∂t

)

coll

= −f − f0
τ(k)

, (3.6)

where f and f0 are distribution functions out-of-equilibrium and, respectively, in equilibrium, and τ(k) is the
relaxation time of the momentum and/or energy. The relaxation time τ(k) is given by the quantum mechanics
of the scattering process associated to a particular scatterer.

We may classify the main scatterers as follows:
- static scatterers: they only scatter free carriers elastically (the momentum of free carriers is changed, their
energy being conserved; examples: point-like or extended defects with no internal degrees of freedom);
- dynamic scatterers: they scatter free carriers inelastically (both the energy and momentum are changed;
example: electron-phonon interaction, electron-electron interaction, impurities with internal degrees of freedom
accessible at typical energies of free carriers).

Suppose that the system of interest is a metallic sample, made of a cubic (isotropic) metal and the applied
electric field is stationary (independent of time) and homogeneous (independent of r). Then, except for a small
period of time immediately after applying the field, there is no reason for the distribution function to depend
on time or position (i.e. we only consider the stationary case). In addition, we will restrict our analysis to the
linear response only (the conductivity in eq. 3.1 is a linear response function!) by introducing:

f(k) = f0(k) + f1(k), (3.7)

f1(k) being a function of the first order of the applied field (e.g. f1(k) ∝ E). Then the linearized Boltzmann’s
equation (3.5) reads:

f1(k) =
e

~
τ(k)E · ∇kf0(k) = eτ(k)v · E∂f0

∂E
. (3.8)

In writing eq. (3.8) we only kept the terms linear in E and we have used 1
~
∇kf0(k) = 1

~
∇kE(k)∂f0∂E , with

v = 1
~
∇kE(k).

The current density is defined as:

j =
(−e)
V

∑

k,s

vf(k) =
(−e)
V

∑

k,s

vf1(k), (3.9)

as
∑

k,s vf0(k) = 0 due to the fact that in summing over the first Brillouin zone f0(k) = f0(−k), while v ∝ k.

Passing from summation to integral over the first Brillouin zone (i.e.
∑

kA(k) = V
(2π)3

´

BZ A(k)d
3k)), the

above equation reads (the factor 2 comes from spin degeneracy):

j =
(−2e)

(2π)3

ˆ

BZ

vf1(k)d
3k, (3.10)

or, using eq. (3.8):

j =
(−2e2)

(2π)3

ˆ

BZ

v(v ·E)τ(k)
∂f0
∂E

d3k. (3.11)



3.1 Theory 15

The above equation is Ohm’s law; it follows that jα component of the current density (α = x, y, z) is given by

jα =
(−2e2)

(2π)3

ˆ

BZ

vα(
∑

β

vβEβ)τ(k)
∂f0
∂E

d3k, (3.12)

and σαβ component of the conductivity tensor is:

σαβ =
(−2e2)

(2π)3

ˆ

BZ

vαvβτ(k)
∂f0
∂E

d3k. (3.13)

If the metal is isotropic, its dispersion law in the conduction band being E(k) = Ec+
~
2k2

2mn
with an isotropic

effective mass mn, after transforming k-integral to an integral over the energy in the conduction band, one
obtains:

σ =
ne2〈τ〉
mn

, (3.14)

with n being the free carriers density in the conduction band and:

〈τ〉 =
´∞
0

(

−∂f0
∂E

)

τ(E)E3/2dE

´∞
0

(

−∂f0
∂E

)

E3/2dE
. (3.15)

At intermediate temperatures, around Debye’s temperature TD (the temperature associated to the highest
energy of acoustic phonon modes, kBTD = ~ωac,max), the main scattering mechanism in metals is associated
to electron-acoustic phonon interaction. In this case the relaxation time depends on the electron energy as in:

τ(E) = cE3/2 T 5
D

T 5D5

(

TD

T

) , (3.16)

where c is a constant and

D5

(

TD
T

)

=

ˆ

TD
T

0

x5ex

(ex − 1)
2 dx (3.17)

is order-5 Debye’s integral. Taking into account that for a metal −∂f0
∂E = δ(E − EF ), where δ(x) is Dirac’s

function, eqs. (3.14,3.15) lead to:

σ =
ne2cE

3/2
F

mn

T 5
D

T 5D5

(

TD

T

) , (3.18)

or

ρ =
1

σ
= 4ρ0

T 5

T 5
D

D5

(

TD
T

)

, (3.19)

where ρ is the resistivity and ρ0 = mn

4ne2cE
3/2
F

.

Eq. (3.19) has two important asymptotic forms.

Low temperatures, i.e. T ≪ TD
In this case D5

(

TD

T

)

≈ D5(∞) =
´∞
0

x5ex

(ex−1)2
dx = b (a constant value). Consequently:

ρ = 4ρ0b
T 5

T 5
D

, (3.20)

which is the so-called ”T 5 law”, typical for simple metals at low temperatures.
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High temperatures, i.e. T ≫ TD
In this case TD

T ≪ 1 and by considering Taylor series to third order in the denominator of the integrand in
Debye’s integral, one obtains:

x5

(ex − 1)(1− e−x)
≈ x5

(1 + x+ x2

2 + x3

6 − 1)(1− 1 + x− x2

2 ) + x3

6

≈ x3

1 + x2

12

≈ x3
(

1− x2

12

)

(3.21)

and the resistivity (3.19) is given by

ρ(T ) = ρ0
T

TD

[

1− 1

18

(

TD
T

)2
]

. (3.22)

The last equation may be used to experimentally determine ρ0 and TD from the temperature dependence
of the reistivity: plotting ρ

T = f
(

1
T 2

)

one obtains a straight line with the slope − ρ0TD

18 and the intercept on
y-axis ρ0

TD
.

If the temperature is much higher than TD, eq. (3.22) simplifies to:

ρ = ρ0
T

TD
, (3.23)

and the resistivity changes linearly with T .

3.2 Experimental setup and procedure

The experimental setup is shown in Fig.3.1. The sample is a copper wire (10 m length, 0.1 mm diameter)
wrapped around a glass rod introduced in an oven. The temperature of the wire is monitored by using a
thermocouple. In the temperature range covered in this experiment the thermocouple sensitivity is constant,
with a value of 24.6 K/mV.
Rise steadily the temperature inside the oven, starting from room temperature to a maximum of 200°C and
measure the corresponding variation of the electrical resistance of the copper sample by using a multimeter.

Fig. 3.1. Experimental setup for measurements of the temperature dependence of the electrical resistivity of metals.
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3.3 Tasks

� Plot the temperature dependence of the resistance and compare it to theoretical predictions (3.23,3.22).
Explain the experimental results. Since the resistance is given by the well-known expression R = ρ l

S , l
being the length and S the transverse area of the sample, what about the effect of the temperature on the
geometrical factor l

S ?

� Copper crystallizes in a face-centered-cubic (fcc) form, the lattice constant being a = 3.6 Å. It is a mono-
valent chemical element with electron configuration [Ar]3d104s1 and the states in the lower part of the
conduction band originate essentially from atomic 4s levels. Based on these informations, evaluate the den-
sity of electrons in the conduction band of copper. Using eq. (3.14), evaluate and plot the temperature
dependence of the relaxation time 〈τ〉. Use the value mn ≈ 9.1× 10−31 kg for the effective mass.





4

Determination of the band-gap of germanium from electrical

measurements

4.1 Theory

Suppose we are dealing initialy with some crystal consisting of N = N1N2N3 primitive cells, Ni, i = 1, 2, 3
being the numbers of primitive cells following the directions of fundamental vectors of its crystalline lattice
{a1, a2, a3}. Its size in ai direction is then Li = Niai, Ni being a macroscopically large number. Since in this
case most of the atoms of the crystal are in its volume rather that on the surface, the ”volume” properties
dominates. We will eliminate the surface by identically repeating the initial crystal over directions of a1, a2, a3
vectors, until all the physical space is filled. 1

With this model of a crystalline solid, due to its translational invariance (which is the fundamental symmetry
of the crystalline lattice), all one-particle wave functions must have the following analytical structure:

ψnkσ(r) = unkσ(r)e
ik·r (4.1)

unkσ(r) = unkσ(r+R), (4.2)

for each Bravais vector R = n1a1 + n2a2 + n3a3. The quantum numbers n,k, σ represent, respectively:
- n: band index;
- k: the wave vector;
- σ: spin projection.
Wave functions of the form (4.1) are called Bloch’s functions; in a perfect crystal all one-particle wave functions
must be then Bloch’ functions; a typical form is shown in Fig. 4.1.

Fig. 4.1. The real part of a typical Bloch function in one dimension. The dotted line corresponds to eik·r factor and
light circles represent atoms. (from en.wikipedia.org/wiki/Bloch_wave)

They obey periodic boundary conditions (or Born - von Karmann boundary conditions):

ψnkσ(r) = ψnkσ(r+N1a1) = ψnkσ(r+N2a2) = ψnkσ(r+N3a3), (4.3)

1 This model works as long as the initial assumption on the number of atoms on the surface being negligibly small as
compared with the number of atoms in the volume is true. It will not be satisfactory in the case of, e.g. very thin
films, or very small systems with sizes of tens to a few hundreds of lattice constants.

en.wikipedia.org/wiki/Bloch_wave
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which define the allowed values for k:

ki =
2π

Niai
ni, ni ∈

[

−Ni

2
,
Ni

2

)

(4.4)

lying in a Wigner-Seitz cell in the reciprocal space called the first Brillouin’s zone, ki = k · ai

ai
being the

projection of k on the direction of ai. Note that there are N allowed values for k, very densely distributed:
two allowed values for ki are separated by ∆ki = 2π

Niai
which is a small value. Introducing the fundamental

vectors {b1,b2,b3} of the reciprocal lattice associated to the crystalline lattice and taking into account that
ai · bj = 2πδij (δij being Kronecker’s symbol), one writes

k =
n1

N1
b1 +

n2

N2
b2 +

n3

N3
b3, ni ∈

[

−Ni

2
,
Ni

2

)

. (4.5)

To each Bloch’ state (4.1) will correspond an energy level Enσ(k). For each n value there are N very densely
distributed levels, corresponding to the above mentioned k values, forming a band of allowed energies.
Consequently, the energy spectrum of electrons in perfect crystalline solids consists of bands of allowed energies
separated by forbidden gaps where there are no energy levels at all. If there are s atoms in the primitive cell
(forming the base of the crystal) each with gs orbital degeneracy, the allowed bands will consist of s·gs branches
with N k-values each, so gssN energy levels.

Suppose there are Ne electrons in the considered crystal. Electrons are fermions, so each allowed state will
be occupied following Pauli’s exclusion principle. Two kinds of ground (or fundamental) states will arise:

� after occuping each allowed state characterized by a n,k, σ set with electrons, the states of a number of
energy bands will be completely occupied, while the bands lying above in energy will be completely empty;
such a crystal is called a dielectric (or insulator), because in its fundamental state, at absolute zero tem-
perature, its electrons do not flow freely under the influence of a small electric field (because there are no
available states to be excited into by the small electric field). The electrical conductivity of insulators is zero
in their ground state. Occupied bands are called valence bands. The first (completely) unoccupied band is
called conduction band. The energy separation between the last valence band and the conduction band is
called the band-gap. If the band-gap is less than 3 eV, the material is called a semiconductor. The reason for
this is that at non-zero temperatures in such materials a number of electrons will be thermally excited from
the last valence band into states in the conduction band; two kinds of excitations are created following this
process: the conduction electron, occupying states in the conduction band, and the hole occupying states
in the valence band. Both conduction electrons and holes (corresponding to a broken chemical bond in the
crystal) can move freely, as they now occupy Bloch’s states in incompletely filled bands, with a large density
of states freely available at close energies.

� after occuping each allowed state characterized by a n,k, σ set with electrons, the states of a number of
energy bands will be completely occupied, while the last band with occupied states is only partialy filled;
such a crystal is called a metal (or conductor). The last partially filled band is called conduction band.
The last occupied level in the conduction band in the ground state is called Fermi level. The set of states
at Fermi energy is called Fermi sea. The electrons occupying extended Bloch’s states at Fermi sea can be
easily accelerated by a small electric field, as there are many free states available at close energies; so the
electrical conductivity of a metal is non-zero in its ground state.

Real crystals are not perfect. There are always some defects, some point-like (impurities, vacancies, inter-
stitials) other extended (dislocations, grain boundaries, surface). All these defects will break the translational
symmetry of a perfect crystal. If they do not alter significantly the crystalline order (in other words, if the
disorder degree is small), the potential energy describing their interaction with the electrons of the host crystal
will act as a small localized (in space and time) perturbation to the one-particle Hamiltonian corresponding
to the perfect crystal. Consequently, when analyzing the dynamics of free charge carriers (electrons in the
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conduction band of metals or conduction electrons and holes in semiconductors), those defects will scatter
the carriers from one Bloch’s state to another in the same band. Due to these frequent scattering events, the
momentum and/or the energy of the carriers will relax (free carriers cannot be continuously accelerated by an
electric field, they will loose momentum and/or energy due to scattering by defects), which implies that the
electrical conductivity is finite and the current density j obeys Ohm’s law:

j = σ̂ ·E, (4.6)

E being the applied electric field and σ̂ the 2-order conductivity tensor.

Even if the crystals were perfect, there is a source of crystalline disorder at non-zero temperature: the
atomic nuclei the crystal consists of vibrate around their equilibrium positions at T = 0 K. The vibrational
state may be described in terms of normal modes. A normal vibration mode of a crystal is called a phonon. If
there are s atoms in the primitive cell, there will be 3s phonon branches, each with N phonon modes. There
are essentially two types of phonons: acoustic phonons (all the atoms in the primitive cell oscillate in phase)
and optical (the atoms in the primitive cell oscillate out-of-phase). Since optical phonons tend to change the
length of chemical bonds, they require more energy as compared to acoustic ones. By breaking the translational
symmetry, phonons will scatter free carriers.

Resuming, we can classify the scatterers as:
- static: they only scatter free carriers elastically (the momentum of free carriers is relaxed, their energy being
conserved; examples: point-like or extended defects with no internal degrees of freedom);
- dynamic: they scatter free carriers inelastically (both the energy and momentum are relaxed; example:
electron-phonon interaction, electron-electron interaction, impurities with internal degrees of freedom accessi-
ble at typical energies of free carriers).

Taking into account the interaction free carrier - scatterer, the electrical conductivity of a crystal can be
determined, e.g. in the frame of Boltzmann’s approach in the relaxation time approximation. For an isotropic
semiconductor, it is given by:

σ = eµnn+ pµpp (4.7)

where n, p are respectively electrons and holes densities, e is the electron charge and µn, µp are electrons and
holes mobilities, given by

µn,p =
e〈τn.p〉
mn,p

. (4.8)

In the above equation mn,p is the effective mass of free carriers in the conduction and respectively valence
band and 〈τn.p〉 is the relaxation time for electrons and holes, respectively (the mean time between collisions of

free carriers by static and/or dynamic scatterers). For a non-degenerate semiconductor n = Nc exp
(

EF−Ec

kBT

)

,

n = Nv exp
(

Ev−EF

kBT

)

, Nc,v being the effective density of states in the conduction and, respectively, valence

band, Ev is the superior limit of the valence band, Ec is the inferior limit of the conduction band, EF is the
Fermi level located in this case in the forbidden gap, kB is Boltzmann’s constant and T is absolute temperature.

The conductivity of semiconductors varies with temperature (Fig. 4.2). Three ranges can be identified:

� At low temperatures extrinsic conduction dominates (range I). As the temperature rises, charge carriers
are activated from the electrically active impurities (donors or acceptors). As a consequence, the activation
energy of the free carriers density and of the conductivity is given by the ionization energy of donors or
acceptors.

� At moderate temperatures, when all electrically active impurities are ionized (range II), the impurity de-
pletion regime shows up, characterized by constant free carriers densities.
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� At high temperatures (range III), intrinsic conduction regime dominates. Charge carriers are thermally
excited from the valence band to the conduction band, their densities being much larger than the densities
of impurity centers. The temperature dependence is in this case essentially described by an exponential
function.

Fig. 4.2. Conductivity of a semiconductor as a function of the reciprocal of the temperature.

In the intrinsic conduction regime (range III, Fig. 4.2), n = p = ni, with the intrinsic free carriers density:

ni =
√

NcNv e
− Eg

2kBT (4.9)

Eg = Ec − Ev being the band-gap. Note that Nc,v ∝ T 3/2 and the temperature dependence of the relaxation
times is given by a power-law for the most important scatterers 〈τn.p〉 = CT r, C being a constant (independent
of T ).
Collecting all the above results, it follows that the temperature dependence of the conductivity of an intrinsic
semiconductor is given by

σ = e(µn + µp)ni = AT s exp

(

− Eg

2kBT

)

, (4.10)

with s = r + 3
2 .

By experimentally measuring the conductivity at different temperatures and plotting lnσ · T−s = f
(

103

T

)

one

will obtain a straight line with the slope − Eg

2kB ·103 , from which the band-gap Eg can be extracted.

4.2 Experimental setup and procedure

The experimental setup is shown in Fig.4.3. The module with a monocrystalline germanium test sample is
directly connected with the 12 V output of the power unit over the ac-input on the back-side of the module.
The voltage across the sample is measured with a multimeter connected to the two sockets in the lower part on
the front-side of the board. The current and temperature values can be easily read on the integrated display
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Table 4.1. Values of exponents r and s characterizing temperature dependences of free carriers mobilities and of the
conductivity of semiconductors, for the most important scattering mechanisms. TD is Debye’s temperature.

Scatterer r s

neutral impurity 0 3

2

ionized impurity 3

2
3

acoustic phonons - 1
2
1

optical phonons (T > TD) 1

2
2

of the module. Be sure, that the display works in the temperature mode during the measurement. You can
change the mode with the ”Display”-knob.

Fig. 4.3. Experimental setup for the determination of the band-gap of germanium.

Set the current to a value of 5 mA. The current source will maintain the current nearly constant during the
measurement, but the voltage will change with the temperature.

Set the display in the temperature mode. Start the software for measurement configuration and data
acquisition and choose Cobra3 as gauge. You will receive first the configuration screen shown in Fig. 4.4.
Choose parameters that have to be measured and displayed, e.g. the voltage across the sample as a function
of temperature. Select all other parameters as shown in Fig. 4.4. Press the ”Continue” button. Start the
measurement by activating the heating coil with the ”ON/OFF”-knob on the backside of the module and
starting the software.

Record the voltage across the sample as a function on temperature, for a temperature range from room
temperature to a maximum of 170°C. You will receive a typical curve as shown in Fig.4.5.

4.3 Tasks

Since germanium is a cubic semiconductor, its conductivity is given by:

σ =
1

ρ
=

l

S

I

U
, (4.11)
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Fig. 4.4. Start menu of the Cobra3 software for measurement configuration and data acquisition.

Fig. 4.5. Typical experimental results of the voltage measurement as a function of temperature.

where S is the cross-section area of the sample and l its length. The size of the sample is 20× 10× 1mm3.

� With the measured values, plot lnσT−s = f
(

103

T

)

, by choosing from Table 4.1 the value of the exponent

s associated to the scattering mechanism you consider to be dominant in this case. Argue your choice.
� By performing a linear regression of the experimental curve with the expression (see eq.(4.10))

lnσ · T−s = lnA− Eg

2kB · 103
103

T
(4.12)

calculate from the slope the band-gap Eg of germanium. Boltzmann’s constant is kB = 8.625× 10−5 eV/K.
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Hopping conduction in semiconductors

5.1 Theory

In a perfect semiconducting crystal the ground state at T = 0K correspond to completely filled valence bands,
while de band higher in energy than the last valence band (the conduction band) is completely empty. All
states in allowed energy bands in the energetic spectrum are extended Bloch states.
For technological applications, semiconductors are doped: impurities are introduced in the crystalline structure
in a controlled way. Electronic states associated to those impurities are of a very different nature as compared
with the host Bloch state: they are localized (Fig. 5.1b). This is due to the fact that impurity centers are lo-
cated randomly in the host crystal, so the translational symmetry, which is the origin of the extended character
of Bloch host states, is broken. In other words, a degree of disorder has been introduced in the system. Of
practical importance are impurity centers with energy levels in the bandgap, which may act as donors if the
corresponding energy level ED is close to the conduction band (shallow donor, Ec −ED ≈ kBT ), as acceptors
if the corresponding energy level EA is close to the valence band (shallow acceptor, EA − Ev ≈ kBT ), or as
trapping/recombination centers if the corresponding level is deep in the bandgap (|Et − Ec,v| ≫ kBT ) (Fig.
5.1a). Shallow impurities paly an important role in semiconductor physics: a shallow donor is easily ionized by
transfering an electron on an extended state in the conduction band, while a shallow acceptor will capture an
electron from the valence band, this way creating a hole in the valence band.

Ec
Ed

E t

Ea

Ev

(r)ψ

Ed

V(r)

(a) (b)

Fig. 5.1. (a) Impurity levels in the bandgap of a semiconductor: donor, acceptor and trappinng levels; (b) schematics
of a localized state and potential energy well associated to a donor impurity.

Localized states in crystals are always associated with disorder. The higher the disorder degree, the higher
the density of localized states. Crystalline disorder is not exclusively associated with impurities: structural de-
fects of any kind (point-defects like vacancies or interstitials, one-dimensional extended defects like dislocations
or two-dimensional extended defects like surface or grain boundaries) will also break tranlational symmetry,
leading to localized state. An extreme case is that of amorphous materials, where the long range order is com-
pletely lost.
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Both theory and experiment show that with increasing disorder band tails appear, with energy levels associated
to localized states, while the states with energy levels in the middle of the band remain extended (Fig. 5.2).

Fig. 5.2. Schematics of density of states (DOS) near conduction band in a disordered semiconductor. Shaded areas
correspond to localized states. Ed is a donor impurity band and Em is the energy level in the conduction band separating
band tail localized states from extended states. DOS in a perfect crystal is drawn with dotted line.

Due to the presence of localized states, a new type of conduction mechanism may show-up in disordered
semiconductors: at low enough temperatures the main contribution to charge transport comes from electrons
hopping directly between localized states (Fig. 5.3), without reaching extended states in the conduction (or
valence) band. This is called hopping transport. Electrons jump from occupied impurity centers to empty ones,
so empty impurity centers have to exist to make the hopping conduction possible. This comes from partial
compensation, e.g. of donor centers by some acceptor centers with much lower density.

 (r)ψ
1

 (r)ψ
2

E1

E2

Ea

V  =−eEx
ext

a

V(r)

Fig. 5.3. (a) Impurity levels in the bandgap of a semiconductor: donor, acceptor and trappinng levels; (b) schematics
of a localized state and potential energy well associated to a donor impurity.

The hopping transport mechanism leads to a very low mobility of charge carriers, since the electron jumps
are associated with a weak overlap of the localized states centered on first-neighbour donors. It wins in the
competition with the band conduction mechanism, involving extended states and high electron mobilities, only
because if the temperature is low enough the denisty of electrons occupying extended band states is exponen-
tially small. It follows that hopping conduction is favoured by:
- low temperatures;
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- high densities of impurity centers;
- high values of the bandgap.

Let’s begin by considering a simple model for the hopping conductivity: the electron is localized on a
impurity center in a potential well with an energy barrier Ea (Fig. 5.3). Jumps to nearby empty centers can be
described as a tunneling process assisted by phonons. Optical phonons are involved in this process, because in
the case of optical modes the distance between centers varies as they oscillate out-of-phase, and so the overlap
of the wave-functions varies also, increasing or decreasing the jump probability. In thermal equilibrium, the
jump frequency (jump probability per second) is the same, in average, in all directions, consequently there is
no net flow of charges. The jump frequency is given by:

ν = νph exp

(

− Ea

kBT

)

, (5.1)

where νph is the typical phonon frequency, Ea is the barrier height, kB is Boltzmann’s constant and T is
absolute temperature. If a stationary electrical field is applied electron jumps will be oriented in average along
the direction of the field. This is due to the fact that the barrier height is reduced in the direction of the field
(see figure 5.3, where the barrier is reduced to Ea − 1

2eEa towards the anode and is increased to Ea + 1
2eEa

towards the cathode). The average jump frequency in the field direction is given by:

∆νE = νph exp

(

−Ea − 1
2eEa

kBT

)

− νph exp

(

−Ea +
1
2eEa

kBT

)

= 2νph exp

(

− Ea

kBT

)

sinh

(

eEa

2kBT

)

, (5.2)

which, for low field values eEa≪ kBT , becomes:

∆νE =
eνphEa

kBT
exp

(

− Ea

kBT

)

, (5.3)

a being the average separation distance between impurity centers.
If the density of electrons able to jump is n, then the current density can be evaluated as j = env = ena∆νE

which, with eq. (5.3), reads:

j =
e2nνphEa

2

kBT
exp

(

− Ea

kBT

)

. (5.4)

Eq. (5.4) is Ohm’s law in local form, j = σE, with the hopping conductivity:

σh =
e2nνpha

2

kBT
exp

(

− Ea

kBT

)

. (5.5)

Consequently, the hopping mobility is:

µh =
eνpha

2

kBT
exp

(

− Ea

kBT

)

, (5.6)

and its temperature dependence is of activated type. This exponential temperature dependence of the mobility
is a signature for hopping conduction. In the case of band conduction mechanism, the temperature dependence
of the mobility reflects the dominant scattering mechanism and is at most a power function.

A more realistic model for hopping transport, based on percolation theory, gives the same temperature
dependence for the hopping conductivity and mobility, with a refined activation energy Ea, related to the am-
plitude of characteristic fluctuations of potential energy due to disorder. In addition, considering the resistivity

ρh = ρ0h exp

(

Ea

kBT

)

(5.7)
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the pre-exponential factor ρ0h depends exponentially on the density of impurity centers Ni:

ρ0h = ρ0e
f(Ni). (5.8)

The physical reason for the dependence (5.8) is as follows: the jump probability is determined by the wave-
function overlap. Since the separation between impurity or defect centers is usually larger than the localization
radius (at a moderate disorder degree), the overlap integrals drop exponentially with the distance between
centers. This exponential dependence is considered to be the main experimental evidence for the hopping
transport mechanism.

5.2 Experimental setup and procedure

The experimental setup is shown in Fig.5.4. The sample is a piece of ceramic (an alloy of manganese, cobalt
and bismuth oxides), introduced in an electrical oven. The temperature of the sample is monitored by using a
thermocouple. In the temperature range covered in this experiment the thermocouple sensitivity is constant,
with a value of 24.6 K/mV.
Rise steadily the temperature inside the oven, starting from room temperature to a maximum of 100°C and
measure the corresponding variation of the electrical resistance of the sample by using a multimeter. Begin by
setting the value of the heating current to 0.8 A and then increase it in steps of 0.5 A if the temperature stops
to increase. Do NOT use a heating current more than 2.5 A!

Fig. 5.4. Experimental setup for measurements of the temperature dependence of the hopping resistivity.

5.3 Tasks

� With the geometric shape of the sample, R [kΩ] = 0.25× ρ [kΩ ·m]. Plot the temperature dependence of
the resistivity and compare it to theoretical predictions (5.7). You will use an Arrhenius plot to show your

data: ln ρ = f
(

103

T

)

. Evaluate the activation energy Ea.

� Evaluate the phonon frequency νph, knowing that kB = 8.625 × 10−5 eV/K, a = 8.27 Å and n = 3.6 ×
1018 cm−3.
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Hall effect in semiconductors

6.1 Theory

The Hall effect is the production of a voltage drop (the Hall voltage) across an electrical conductor placed in
a magnetic field perpendicular to an electric current in the conductor. The Hall voltage is measured along the
direction which is perpendicular to the plane defined by the current density j and the magnetic field B (Fig.
6.1). It is due to Lorentz’s force acting on free carriers moving in a transverse magnetic field and diverging them
towards a lateral surface on y direction, until the electric field developing on y is intense enough to compensate
Lorentz’s force:

FH = −FL, (6.1)

where FH = qEH and FL = qv ×B, q is the charge of majority carriers, EH is the Hall field. The sign of the
Hall field indicates the conduction type of the analyzed sample; it follows that the Hall effect can be used to
identify the conduction type of semiconductors.

Ey

O x

y

z

j

B

x

Fig. 6.1. Hall effect on a rectangular n-type semiconductor sample.

The Hall field Ey = EH is proportional to the current density jx and the magnetic field B, if the magnetic
field is not too high (µnB < 1, µn being the mobility of majority charge carriers, supposed here to be electrons).
Quantitatively, the Hall effect is described by the Hall constant, defined as follows:

RH =
EH

jxB
. (6.2)

The Hall constant is related to the electronic properties of the (semi)conductor material. In the frame of
Boltzmann’s approach to the transport phenomena in solids, electrical conductivity in a transverse magnetic
field becomes a 2-order tensor even in the case of isotropic (cubic) materials, due to the anisotropy introduced
by the magnetic field B = (0, 0, B) (see subsection 6.1.1 for details):
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σ̂ =





σxx σxy 0
−σxy σxx 0
0 0 σzz



 (6.3)

where

σxx =
ne2

m∗

〈

τ(k)

1 + ω2
cτ

2(k)

〉

(6.4)

σxy = −ne
2

m∗

〈

ωcτ
2(k)

1 + ω2
cτ

2(k)

〉

, (6.5)

ωc = eB
m∗

being the cyclotron pulsation for the carriers with effective mass m∗, e being the absolute value of
electron charge and n the majority carriers density. The mean value 〈τ〉 is given by:

〈τ〉 =
´∞
0

(

− df0
dE

)

τ(E)E3/2dE

´∞
0

(

− df0
dE

)

E3/2dE
, (6.6)

where f0(E) is Fermi-Dirac distribution function, E is the energy of the carrier in the band and τ(E) is the
relaxation time of the momentum and/or energy due to scattering of charge carriers by defects.

Ohm’s law, j = σ̂ · E, in the experimental conditions corresponding to the Hall effect measurements (i.e.
jy = 0), leads to:

jx = σxxEx + σxyEy (6.7)

0 = −σxyEx + σxxEy. (6.8)

From eqs. (6.2,6.7,6.8) one obtains:

RH =
1

B

σxy(B)

σ2
xx(B) + σ2

xy(B)
, (6.9)

which for not too high magnetic fields (i.e. ωcτ = µB < 1) and supposing that majority carriers are electrons
with density n simplifies to:

RH = − 1

ne

〈τ2〉
〈τ〉2 . (6.10)

If majority carriers are holes in the valence band of a semiconductor, with density p, the expression for the
Hall constant reads:

RH =
1

pe

〈τ2〉
〈τ〉2 . (6.11)

The ratio rH = 〈τ2〉
〈τ〉2 is called Hall scattering factor; it depends on the main scattering mechanism controlling

the scattering of majority charge carriers in the sample. Its values for the most important scatterers are collected
in table 6.1.

Suppose the analyzed semiconductor sample is n-type (majority carriers are conduction band electrons). If
the longitudinal conductivity of the sample is measured independently in the absence of magnetic field, since
σ = neµn, one obtains:

|RH |σ = µnrH = µH , (6.12)

which is called Hall mobility.
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Table 6.1. Values of the Hall scattering factor in semiconductors, for the most important scattering mechanisms. TD

is Debye’s temperature.

Scatterer rH

neutral impurity 1
ionized impurity 315π

512

acoustic phonons 3π

8

optical phonons (T << TD) 1
optical phonons (T > TD) 45π

128

It follows that the temperature dependent Hall effect can be used for a complete characterization of the
electronic properties of semiconductors, since it gives:
- the conduction type of the sample;
- the temperature dependence of the majority carriers density n(T ), from which the bandgap Eg and the
ionization energy of the main donor can be extracted;
- the temperature dependence of the Hall mobility µH(T ), from which informations about the scattering
mechanisms can be extracted.
The Hall effect is of utmost importance in the solid state physics.

6.1.1 Boltzmann’s equation

We are interested in describing the charge transport in magnetic fields in the case of a semiconductor sample.
For the sake of simplicity, we will consider the case of an isotropic crystal: a cubic semiconductor, let’s say with
a n-type conduction (n ≫ p, n is the density of electrons in the conduction band, p is the density of holes in
the valence band). Then the dispersion relation for the conduction band reads:

E(k) = Ec +
~
2k2

2mn
, (6.13)

with mn the isotropic effective mass. The average velocity of electrons in a Bloch state is then:

v =
1

~
∇kE(k) =

~k

mn
. (6.14)

Let E, B be the externally applied electric and magnetic fields. We only consider here the case of stationary
and uniform fields.

Recall that Boltzmann’s equation for the one-particle distribution function f(r,k, t) reads:

∂f

∂t
+ v · ∇rf − e

~
(E+ v ×B) · ∇kf =

(

∂f

∂t

)

coll.

(6.15)

where we have explicitely taken into account that the electron charge is (−e); the right-hand-side term is the
collision integral, describing the scattering of conduction band electrons by the structural defects, impurities,
phonons or other electrons. In the relaxation time approximation one writes this term as in:

(

∂f

∂t

)

coll.

= −f − f0
τ(k)

(6.16)

where τ(k) is the momentum/energy relaxation time, and

f0(E(k)) =
1

1 + exp
(

E(k)−EF

kBT

) (6.17)
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is the equilibrium Fermi-Dirac distribution function, EF being the Fermi level, kB Boltzmann’s constant and
T absolute temperature. Then, in the relaxation time approximation, Boltzmann’s equation (6.15) reads:

∂f

∂t
+ v · ∇rf − e

~
(E+ v ×B) · ∇kf = −f − f0

τ(k)
. (6.18)

Since the applied fields are uniform and stationary and we are only interested to describe the stationary
case, there is no reason for f to depend on time and position. Then f = f(k) and eq. (6.18) simplifies to the
form:

− e

~
(E+ v ×B) · ∇kf = −f − f0

τ(k)
. (6.19)

In the next section we will try to solve the above equation for f .

The one-electron distribution function in stationary and uniform electric and magnetic fields

We are interested in the linear response relative to the applied electric field, so we search for the solution of
the Boltzmann’s equation as f = f0+f1(k), with f1(k) linear in E. We will only keep systematically the terms
linear in E. In terms of the correction f1, eq. (6.19) reads:

− e

~
E · ∇k(f0 + f1)−

e

~
(v ×B) · ∇kf0 −

e

~
(v ×B) · ∇kf1 = − f1

τ(k)
. (6.20)

Since f1 is linear in E and we are only interested in the linear response in E, we will neglect f1 in the first
term (with the electric field E) in the above equation:

− e

~
E · ∇kf0 −

e

~
(v ×B) · ∇kf0 −

e

~
(v ×B) · ∇kf1 = − f1

τ(k)
. (6.21)

For reasons that will become clear below, we will search the solution to eq. (6.21) in the form:

f1(k) =
~

mn

(

−∂f0
∂E

)

k · Z(E(k)), (6.22)

where Z(E(k)) is the new unknown function, to be determined.
Let’s consider separately the terms in eq. (6.21):

− e

~
E · ∇kf0 = − e

~
E · ~v∂f0

∂E = −eE · v∂f0
∂E ; (6.23)

− e

~
(v ×B) · ∇kf0 = − e

~
(v ×B) · (~v)∂f0

∂E = 0, (6.24)

since v · (v ×B) = 0;

- taking into account eq. (6.22), one writes:
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− e

~
(v ×B) · ∇kf1 =

e

mn
(v ×B) · ∇k

(

∂f0
∂E Z · k

)

=
e

mn
(v ×B) ·

(

∂f0
∂E ∇k(Z · k) + (Z · k)∂

2f0
∂E2

~v

)

=
e

mn

∂f0
∂E (v ×B) · ∇k(Z · k)

=
e

mn

∂f0
∂E (v ×B) ·

(

Z+

(

k · ∂Z
∂E

)

~v

)

=
e

mn

∂f0
∂E (v ×B) · Z

=
e

mn

∂f0
∂E (B× Z) · v. (6.25)

(6.26)

In the last of the above equations the following property of the mixed product was used:A·(B×C) = B·(C×A).
Using eqs. (6.23,6.24,6.25,6.22, 6.14) in (6.21), one obtains:

Z− eτ(k)

mn
(B× Z) = −eτ(k)E. (6.27)

Next we proceed as follows:
- considering the scalar product of (6.27) with B; since B · (B× Z) = 0, one obtains:

B · Z = −eτ(k)B ·E; (6.28)

- considering the vectorial product of (6.27) with B to the left and using the algebraic identity A · (B×C) =
B(A ·C)−C(A ·B), one obtains:

B× Z− eτ(k)

mn
(B(B · Z)−B2Z) = −eτ(k)B×E; (6.29)

Using (6.28) and (6.29) in (6.27) one finaly obtains:

Z = −eτ(k)
E+ eτ(k)

mn
B×E+

(

eτ(k)
mn

)2

B(B · E)

1 +
(

eτ(k)
mn

)2

B2

. (6.30)

Sometimes Z in the above equation is called Hall field. The current through the sample is given by:

j = −e
∑

k, sf(k)v = −e
∑

k, sf1(k)v, (6.31)

where s is the spin projection quantum number. In establishing the last form of eq. (6.31), the expression
∑

k, sf0(k)v = 0 was considered (the function under the sum sign is anti-symmetric, i.e. f0(−k)v(−k) =
−f0(k)v, so, when summing over the first Brillouin zone the result is zero). Passing to integral over the first
Brillouin zone (6.31) reads:

j =
−2e

(2π)3

ˆ

k∈BZ

f1(k)vd
3k

=
−e
4π3

ˆ

k∈BZ

(Z · v)v∂f0
∂E d

3k. (6.32)

Observe that if E = 0 then j = 0: the magnetic field does not give rise to a net chrage flow through the
sample. In addition, even if the semiconductor material was assumed to be isotropic in this calculation, eq.
(6.32) shows that the conductivity tensor is anisotropic (the current density is not parallel to the electric field),
due to the anisotropy induced by the magnetic field.
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Conductivity tensor

Let us consider that the magnetic field is oriented along Oz axis, i.e. B = (0, 0, Bz). The electric field is
E = (Ex, Ey, Ez). Then:

B×E =

∣

∣

∣

∣

∣

∣

x y z

0 0 Bz

Ex Ey Ez

∣

∣

∣

∣

∣

∣

= −EyBzx+ ExBzy

and (6.30) leads to:

Zx(k) = −eτ(k)Ex − ωcτ(k)Ey

1 + ω2
cτ

2(k)

Zy(k) = −eτ(k)Ey + ωcτ(k)Ex

1 + ω2
cτ

2(k)
(6.33)

Zz(k) = −eτ(k)Ez ,

(6.34)

where ωc =
eB
mn

is cyclotron pulsation. It follows that the density current on Ox direction (see (6.32)) is given
by:

jx =
−e
4π3

ˆ

k∈BZ

(Zxvx + Zyvy + Zzvz)vx
∂f0
∂E d

3k

=
−e
4π3

ˆ

k∈BZ

Zxv
2
x

∂f0
∂E d

3k

=
e2~2

6πmn

ˆ kmax

kmin

(

−∂f0
∂E

)

k4τ(k)

1 + ω2
cτ

2(k)
(Ex − ωcτ(k)Ey)dk

=
(2mn)

3/2e2

3π2~3mn

ˆ ∞

0

(

−∂f0
∂E

) E3/2τ(E)
1 + ω2

cτ
2(E) (Ex − ωcτ(E)Ey)dE , (6.35)

where it was assumed that B is low enough, so that the energy spectrum in the conduction band (6.13) is
not changed, and also that τ(k) = τ(−k), so the integrals over Brillouin zone with odd powers of velocity
components vanish. Using also the expression for the equilibrium electron density:

n =
1

V

∑

k,s

f0(k)

=
2

(2π)3

ˆ

k∈BZ

f0(k)d
3k

=
1

π2

ˆ kmax

kmin

f0(k)dk

=
(2mn)

3/2

2π2~3

ˆ ∞

0

f0(E)E1/2dE

=
(2mn)

3/2

3π2~3

ˆ ∞

0

(

−∂f0
∂E

)

E3/2dE , (6.36)

the expression (6.35) reads:
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jx = σxxEx + σxyEy , (6.37)

with:

σxx =
ne2

mn

〈

τ

1 + ω2
cτ

2

〉

(6.38)

σxy = −ne
2

mn

〈

ωcτ
2

1 + ω2
cτ

2

〉

. (6.39)

(6.40)

In (6.38,6.39) 〈A〉 is the expression:

〈A〉 =
´∞
0

(

−∂f0
∂E

)

A(E)E3/2dE
´∞
0

(

−∂f0
∂E

)

E3/2dE
, (6.41)

which is commonly found in the physics of kinetic phenomena in condensed matter, in Boltzmann’s approach.
The same way one finds that:

jy = −σxyEx + σxxEy, (6.42)

jz = σzzEz (6.43)

with

σzz =
ne2〈τ〉
mn

. (6.44)

Consequently, for the analyzed system the conductivity tensor is given by:

σ̂ =





σxx σxy 0
−σxy σxx 0
0 0 σzz



 , (6.45)

with components given in (6.38,6.39,6.44).

6.2 Experimental setup and procedure

The experimental setup is shown in Fig.6.2. The module with a monocrystalline germanium test sample is
directly connected with the 12 V output of the power unit over the ac-input on the back-side of the module.
The Hall voltage and the voltage drop across the sample are measured with a multimeter, using the sockets on
the front-side of the module. The current Ix and temperature can be easily read on the integrated display of
the module. The magnetic field is measured with the teslameter via a Hall probe, placed in the close vicinity
of the germanium sample.

� Set the magnetic field to a value of 250 mT by changing the voltage and current on the power supply. Set
the display on the module into the ”current-mode”. Start the software for measurement configuration and
data acquisition and choose Cobra3 as gauge. You will receive first the configuration screen shown in Fig.
6.3. Choose parameters that have to be measured and displayed, e.g. the Hall voltage as a function of the
current through the sample. Select all other parameters as shown in Fig. 6.3. Press the ”Continue” button.
Start the measurement by varying the current through the sample with the ”Ip”-knob on the frontside of
the module and starting the software.
Record the Hall voltage as function of the current from -30 mA up to 30 mA. UH vs. Ix experimental curve
shape will be as shown in Fig. 6.4.



36 6 Hall effect in semiconductors

Fig. 6.2. Experimental setup for temperature dependent Hall effect measurements.

Fig. 6.3. Start menu of the Cobra3 software for measurement configuration and data acquisition.

Fig. 6.4. Hall voltage as a function of the current through the sample.
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� Set the current to 30 mA. Repeat the above mentioned steps, but configure the measurement to record the
Hall voltage as a function of magnetic field. Record the Hall voltage as a function of the (positive) magnetic
induction B up to 300 mT.

� Put the display in temperature mode. Set the current to a value of 30 mA. The magnetic field is off. The
current is kept constant during the measurement, but the longitudinal voltage changes due to changes in
temperature. Configure the measurement to record the Hall voltage as a function of temperature. Start the
measurement by activating the heating coil with the ”ON/OFF”-knob on the backside of the module and
starting the software. Record the temperature dependence of the voltage for a temperature range from the
ambient temperature to a maximum of 170°C. The typical Ux(T ) dependence is shown in Fig. 6.5; since
the current was constant, and σ = l

S
Ix
Ux

, l being the length and S the transverse area of the sample, this
is essentially a plot of the conductivity as function of the inverse of temperature, in the absence of the
magnetic field.

Fig. 6.5. Hall voltage as a function of the current through the sample.

� Set the current to 30 mA and the magnetic induction to 300 mT. Record the Hall voltage as a function of
temperature. Set the display in the temperature mode. Start the measurement by activating the heating
coil with the ”ON/OFF”-knob on the backside of the module and starting the software. The typical UH(T )
dependence is shown in Fig. 6.6.

Fig. 6.6. Hall voltage as a function of temperature.
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6.3 Tasks

The sample is a rectangular piece of germanium, 20× 10× 1 mm3.

� Check that the Hall voltage is proportional to both the current Ix and the magnetic field B, as suggested
by eq. (6.2), which can be put into the form:

RH =
UHd

IxB
, (6.46)

with d being the thickness of the sample. Identify the conduction type of the sample.
� Based on the experimental data, calculate and plot RH(T ), n(T ) and µH(T ), by using eqs. (6.46,6.10,6.12).

Comment the results. What is the dominant scattering mechanism?

Boltzmann’s constant is kB = 8.625 × 10−5 eV and the absolute value of the electron charge is e =
1.602× 10−19 C.



7

Optical absorption in semiconductors

The purpose of this practical work is to study optical absorption in semiconductors near the fundamental
absorption threshold and to measure the bandgap.

7.1 Theory

You have already learned that in a perfect semiconductor the ground state at T = 0K correspond to completely
filled valence bands, while the conduction band is completely empty. All states in allowed energy bands in the
energetic spectrum are extended Bloch states. A semiconductor is characterized by the fact that even at non-
zero temperatures the valence band is macroscopically filled, while the conduction band is almost empty. Only a
small number of states in the vicinity of the minimum energy in the conduction band are filled with electrons at
T 6= 0K, this number depending exponentially on the temperature. Photons with energies above the bandgap
of a semiconductor will be absorbed, inducing electron transitions from states in the valence band to states in
the conduction band. Due to high densities of states in the two bands, this process may be very intense.
Optical properties of semiconductors strongly depend on the peculiarities of the valence and conduction band
dispersion relations Ec,v(k). At energies near the maximum of valence band and minimum of conduction band
of a semiconductor, two distinct types of dispersion relations can occur (see Fig. 7.1): either the maximum of
the valence band and the minimum of conduction band correspond to the same k in the first Brillouin zone, or
they correspond to different k’s. In the first case the semiconductor is called a direct band gap semiconductor,
while in the second it is called an indirect band gap semiconductor. The two types of semiconductors have very
different optical responses at photon energies near the bandgap.

ZnO, GaAs, CdS, CdTe are direct band gap semiconductors, while Si and Ge are indirect band gap semi-
conductors.
Let’s start by considering the case of a direct band gap semiconductor. The one-electron Hamiltonian charac-
terising electron states in the crystal is in its simplest form:

H0 =
p2

2m
+ V (r), (7.1)

where V (r) = V (r+R) is the crystalline potential energy, with R = n1a1 + n2a2 + n3a3 any Bravais’ vector.
We will describe the incident electromagnetic field in the Coulomb gauge, with the scalar potential Φ(r, t) = 0
and the vectorial potential A(r, t) = A0epe

i(q·r−ωt), with ∇ ·A = 0, ep describing the polarization state of the
electromagnetic monochromatic transverse wave with wave-vector q and pulsation ω. In this gauge the electric
and magnetic fields are given by E = −∂A

∂t , B = ∇A. Then the expression of the one-electron Hamiltonian in
the presence of the field reads:
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Ec

Ev

Ec

Ev
kk

E(k) E(k)

(a) (b)

Fig. 7.1. (a) Semiconductor with direct gap: the maximum of the valence band and the minimum of the conduction band
occur at the same point k in the first Brillouin zone (in this case the center of the Brillouin zone). (b) Semiconductors
with indirect gap: the maximum of valence band and the minimum of conduction band occur at different points in the
first Brillouin zone.

H =
(p+ eA)2

2m
+ V (r)

= H0 +
eA0

m
ei(q·r−ωt)ep · p+

e2A2(r, t)

2m
= H0 +H1 +H2, (7.2)

where H1 = eA0

m ei(q·r−ωt)ep · p and H2 = e2A2(r,t)
2m . The term H2 in (7.2) is important only if the electro-

magnetic field is intense (e.g. laser radiation). In the present experimental conditions it can be neglected. In
obtaining eq. (7.2) it was taken into account that the commutator [p,A] = −i~∇·A is zero in Coulomb gauge,
since ∇ ·A = 0 (transverse polarized field).

Next we will suppose that the field is weak enough to use the results of the first order time dependent
quantum perturbation theory in describing the transition od an electron from an occupied Bloch state in the
valence band, ψvkv ,σ(r), to a free Bloch state in the conduction band, ψckc,σ(r). Following Fermi’s golden rule,
the probability rate for that single transition to occur is given by:

dPcv

dt
=

2π

~
|〈ψckc,σ|H1A|ψvkv,σ〉|2δ(Ec(kc)− Ev(kv)− ~ω)f0(Ev(kv))[1 − f0(Ec(kc))], (7.3)

with H1A = eA0

m eiq·rep · p and f0(E) = 1

1+e
E−EF
kBT

is Fermi-Dirac distribution function. Since the valence band

is practically filled and the conduction band is practically empty, Pauli factor is f0(Ev(kv))[1−f0(Ec(kc))] ≈ 1
and will be droped in the following.
The matrix element in eq. (7.3) may be transformed as follows:

〈ψckc,σ|H1A|ψvkv,σ〉 =
eA0

m

ˆ

V

ψ∗
kc,σ(r)e

iq·rep · pψkv,σ(r)

=
eA0

m

ˆ

V

u∗ckc,σ(r)e
−ikc·reiq·rep · p

(

uvkv ,σ(r)e
ikv ·r)

=
eA0

m

ˆ

V

u∗ckc,σ(r)e
−ikc·reiq·rep ·

(

~kvuvkv ,σ(r)e
ikv ·r − i~eikv ·r∇uvkv,σ(r)

)

. (7.4)

(7.5)

The first integral in eq. (7.4) is transformed further by writing it as a sum of integrals over all the primitive
cells of the crystal indexed by Bravais vector Rl, with r = Rl + ρl:
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ˆ

V

u∗ckc,σ(r)e
−ikc·reiq·ruvkv,σ(r)e

ikv·r =
∑

l

ˆ

Vl

u∗ckc,σ(Rl + ρl)uvkv ,σ(Rl + ρl)e
i(kv+q−kc)·(Rl+ρl)d3ρl

=
∑

l

ei(kv+q−kc)·Rl

ˆ

Vl

u∗ckc,σ(ρl)uvkv,σ(ρl)e
i(kv+q−kc)·ρld3ρl

=

ˆ

Vp

u∗ckc,σ(ρ)uvkv ,σ(ρ)e
i(kv+q−kc)·ρd3ρ

∑

l

ei(kv+q−kc)·Rl

= δ(kv + q− kc)NVp
1

Vp

ˆ

Vp

u∗ckc,σ(ρ)uvkv ,σ(ρ)d
3ρ

= 0. (7.6)

In establishing the last result, we have taken into account that the ”amplitudes” uk(r) of Bloch functions are
periodic, i.e. uk,σ(ρ+Rl) = uk,σ(ρ), ∀Rl, and orthonormal, i.e. 1

Vp

´

Vp
u∗nk1,σ

(ρ)un′k2,σ′(ρ)d3ρ = δnn′δσσ′δ(k1−
k2), and that

∑

l e
i(k1−k2)·Rl = Nδ(k1 − k2) with N the number of primitive cells of the crystal. Vp is the

volume of the primitive cell.
Applying the same procedure for the second integral in eq. (7.4), one obtains:

〈ψckc,σ|H1A|ψvkv ,σ〉 = −i e~A0

m
Nδ(kv + q− kc)

ˆ

Vp

u∗ckc,σ(r)ep ·∇uvkv ,σ(r)d
3r.

= −i e~A0

m
V δ(kv + q− kc)Pcv(kc,kv), (7.7)

with Pcv(kc,kv) =
1
Vp

´

Vp
u∗ckc,σ

(r)ep ·∇uvkv,σ(r)d
3r = 〈uckc,σ|ep ·∇|uvkv,σ〉Vp .

A typical value for the incident monochromatic visible light wave-vector is q = 2π
λ ≈ 107 m−1 for λ = 500 nm,

while typical values for kc,v in the first Brillouin zone are π
a ≈ 1010 m−1 for a lattice constant a = 3.5Å. Since

q ≪ kc,v it follows that kv + q ≈ kv = kc in eq. (7.7), i.e. the transitions are ”vertical” in this case (electron
wave-vector k is conserved in the transition valence band - conduction band in a semiconductor with direct
band gap), as suggested in Fig. 7.1a.

The power lost by the incident electromagnetic field due to absorption in unit volume of the crystal is
expressed as:

~ω
∑

kc,kv

dPcv

dt
= 2πω

(

e~A0

m

)2
∑

kc,kv

|Pcv(kc,kv)|2δ(kv − kc)δ(Ec(kc)− Ev(kv)− ~ω)

= 2πω

(

e~A0

m

)2
∑

k

|Pcv(k)|2δ(Ec(k)− Ev(k)− ~ω)

=
ω

(2π)2

(

e~A0

m

)2 ˆ

BZ

|Pcv(k)|2δ(Ec(k)− Ev(k)− ~ω)d3k

=
ω

(2π)2

(

e~A0

m

)2

|Pcv|2
ˆ

BZ

δ(Ec(k)− Ev(k)− ~ω)d3k. (7.8)

(7.9)

In writing the last line of the above equations it was used the fact that in most cases the matrix element Pcv(k)
depends slowly on k. The energy flux density of the incident electromagnetic wave is given by the Poynting
vector:

S =
1

µ0
E×B =

nω2

c
A2

0ep ×
q

q
ei(q·r−ωt). (7.10)

Combining eqs. (7.8,7.10), the absorption coefficient can be defined as:
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α =
~ω

|S|
∑

kc,kv

dPcv

dt

=
c

(2π)2nω

(

e~

m

)2

|Pcv|2
ˆ

BZ

δ(Ec(k)− Ev(k)− ~ω)d3k

=
α0

ω

ˆ

BZ

δ(Ec(k)− Ev(k)− ~ω)d3k

=
α0

~ω

‹

Sk(ω)

dSk

|∇kEcv(k)|Sk(ω)
, (7.11)

(7.12)

where Sk(ω) is the surface defined in the reciprocal space by Ecv(k) = Ec(k)− Ev(k) = ~ω and the following
property of Dirac delta generalized function was used:

ˆ

f(x)δ(g(x)) =

‹

g(x)=0

f(x)dσ

|∇g(x)|g(x)=0
. (7.13)

The quantity

gopt(ω) =
2

(2π)3

‹

Sk(ω)

dSk

|∇kEcv(k)|S(ω)
(7.14)

appearing in eq. (7.11) is called joint density of states. Suppose the dispersion laws in the conduction and
valence band are isotropic, given by:

Ec(k) = Ec +
~
2k2

2mn
(7.15)

Ev(k) = Ev −
~
2k2

2mp
. (7.16)

Then the surface Sk(ω) is a sphere of radius k =
(

2mr

~2

)1/2
(~ω − Eg)

1/2 and the joint density of state is:

gopt(ω) =
1

(π)2

(

2mr

~2

)3/2

(~ω − Eg), (7.17)

where mr is the reduced mass (m−1
r = m−1

n +m−1
p ), Eg = Ec − Ev is the (direct) band gap and ~ω ≥ Eg.

Consequently, replacing the joint density of states in (7.11), the dependence of the optical absorption
coefficient on the energy of incident light in the case of a semiconductor with direct bandgap is:

α(ω) = α0
(~ω − Eg)

1/2

~ω
, (7.18)

if ~ω ≥ Eg.

Eq. (7.18) is used in optical absorption spectroscopy to experimentally measure the bandgap of direct band
gap semiconductors.

7.2 Experimental setup and procedure

The experimental setup is shown schematically in Fig.7.2. The white light produced by an incandescent lamp
S is fed into the entrance slit of the monochromator MC. The semiconductor sample P (a thin film of CdS
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D

S

P

MC

Fig. 7.2. Experimental setup for measurements of the optical absorption coefficient.

deposited on optical glass substrate) is placed at the output slit of the monochromator, in front of the detector
D (a Si p-i-n diode).

The response of the detector will be recorded in the wavelength range 800 nm - 500 nm, with and without
the semiconductor sample inserted in place. In the range 600 nm - 500 nm use the finest λ-steps allowed by
the experimental setup.

7.3 Tasks

� Evaluate the absorbance as A = ln i0(λ)
i(λ) , where i0(λ) is the intensity detected at wavelength λ without the

semiconductor sample and i(λ) is the intensity detected at wavelength λ with the semiconductor sample in
place. A = αd, where α is the optical absorption coefficient and d is the thickness of the film.

� Plot the quantity (A~ω)2 against the energy of incident photons ~ω = hc
λ (c = 3× 108 m/s is the speed of

light). With h = 6.626× 10−34 J.s the energy of incident photons may be evaluated in eV as:

~ω [eV] =
1242

λ [nm]
. (7.19)

Compare with eq. (7.18) and suggest a method to determine the bandgap Eg. Evaluate the bandgap of
CdS.
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